Prantice Eram \# 2-C1- TOYs FOR PROFIT

TOYS N' THINGS, a manufacturing company, specializes in children's outdoor structures. Their newest products in development are the Hideout Hut ${ }^{T M}$ and the Toy Castle ${ }^{T M}$. The president of TOYS N' THINGS has hired you as a consultant. Your job is to choose only one product to sell in stores. You must choose the product that will make the most profit.

TOYS N' THINGS has set the retail price of both structures. The Hideout Hut sells for $\$ 99.95$ and the Toy Castle sells for $\$ 73.95$. The diagrams for both structures are shown on the next two pages of this booklet.

Cost of Material

Both structures are made of lightweight, solid plastic. The fixed cost for manufacturing the products is $\$ 7.50$ plus an additional $\$ 6.75$ per cubic metre of plastic used.

Cost of Painting

Both structures must also be painted. The cost of painting the structures is shown in the graph below.

Which product would you recommend selling in order for TOYS N' THINGS to make the most profit?

Hideout Hut

This is a pre-assembled structure with a cylindrical tunnel through the middle.
The surface that touches the ground does not need to be painted. Only the exposed surfaces, including the inside of the tunnel, need to be painted. All of the surfaces are painted in the factory after assembly.

Square Based Pyramid slant height: 1.5 m base: 1.8 m

Cube

side $=1.8 \mathrm{~m}$

Cylinder

height: 1.8 m choice of radius: $r=[0.2,0.4] \mathrm{m}$

Note:

The cylinder radius can range from 0.2 m to 0.4 m . As a consultant you must choose only one size of tunnel (choose only one radius) when determining the costs.

Toy Castle

This structure will be assembled by the customer. All surfaces of the individual pieces are painted in the factory before assembly. The pieces used to create the structure are shown below.

Cone
radius $=0.3 \mathrm{~m}$
height $=0.4 \mathrm{~m}$

Cylinder

height: 1.5 m radius: 0.3 m

Rectangular Prism
length: 1.5
m
width: 0.1 m
height: 1.2

Hemisphere radius $=0.3 \mathrm{~m}$

Marking Key of the Situational Problem

> THE VOLUME OF THE HIDEOUT HUT

Height of the pyramid

$$
\begin{aligned}
b & =\frac{1.8}{2}=0.9 \mathbf{~ m} \\
h^{2} & =c^{2}-b^{2} \\
& =(1.5 \mathbf{m})^{2}-(0.9 \mathbf{m})^{2} \\
& =1.44 \mathbf{m}^{2} \\
\sqrt{h^{2}} & =\sqrt{1.44 \mathbf{m}^{2}} \\
h & =1.2 \mathbf{m}
\end{aligned}
$$

Volume of the pyramid

$$
\begin{aligned}
V & =\frac{A_{b} h}{3} \\
& =\frac{\left(s^{2}\right) h}{3} \\
& =\frac{(1.8 \mathrm{~m})^{2}(1.2 \mathrm{~m})}{3} \\
& =1.30 \mathrm{~m}^{3}
\end{aligned}
$$

Volume of the cube

$$
\begin{aligned}
V & =s^{3} \\
& =(1.8 \mathbf{m})^{3} \\
& =5.83 \mathbf{m}^{3}
\end{aligned}
$$

Volume of cylinder
If $r=0.2 \mathrm{~m}$

$$
\text { If } r=0.3 \mathrm{~m}
$$

$$
\text { If } r=0.4 \mathrm{~m}
$$

$$
V=\pi r^{2} h
$$

$$
V=\pi r^{2} h
$$

$$
V=\pi r^{2} h
$$

$$
=\pi(0.2 \mathrm{~m})^{2}(1.8 \mathrm{~m})
$$

$$
\begin{aligned}
& =\pi(0.2 \mathrm{~m})^{2}(1.8 \mathrm{~m}) \\
& =0.072 \pi \mathrm{~m}^{2} \text { or } 0.23 \mathrm{~m}^{2}
\end{aligned}
$$

$$
=\pi(0.3 \mathrm{~m})^{2}(1.8 \mathrm{~m})
$$

$$
=\pi(0.4 \mathrm{~m})^{2}(1.8 \mathrm{~m})
$$

$$
=0.16 \pi \mathrm{~m}^{2} \text { or } 0.51 \mathrm{~m}^{2}
$$

$$
=0.29 \pi \mathrm{~m}^{2} \text { or } 0.90 \mathrm{~m}^{2}
$$

Total volume

$$
\begin{array}{rlrl}
\text { If } r=0.2 \mathrm{~m} & \text { If } r=0.3 \mathrm{~m} & \text { If } r=0.4 \mathrm{~m} \\
V_{T} & =V_{\text {cube }}+V_{\text {pyramid }}-V_{\text {cylinder }} & V_{T} & =V_{\text {cube }}+V_{\text {pyramid }}-V_{\text {cylinder }}
\end{array} \quad V_{T}=V_{\text {cube }}+V_{\text {pyramid }}-V_{\text {cylinder }} .
$$

THE SURFACE AREA OF THE HIDEOUT HUT

Surface area of the pyramid

Surface area of the cube (4 sides)

$$
\begin{array}{rlrl}
S A & =4 A_{\text {lat }} & \\
& =4\left(\frac{b \times h}{2}\right) & S A & =4 \mathrm{~s}^{2} \\
& =4\left(\frac{1.8 \mathrm{~m} \times 1.5 \mathrm{~m}}{2}\right) & & =4(1.8 \mathrm{~m})^{2} \\
& =5.4 \mathrm{~m}^{2} & &
\end{array}
$$

Surface area of the inside of the tunnel (cylinder)
If $r=0.2 \mathrm{~m}$
If $r=0.3 \mathrm{~m}$
If $r=0.4 \mathrm{~m}$
$S A=A_{\text {lat }}$

$$
S A=A_{\text {lat }}
$$

$$
S A=A_{\text {lat }}
$$

$$
=2 \pi r h
$$

$$
=2 \pi r h
$$

$$
=2 \pi r h
$$

$$
=2 \pi(0.2 \mathrm{~m})(1.8 \mathrm{~m})
$$

$$
=2 \pi(0.3 \mathrm{~m})(1.8 \mathrm{~m})
$$

$$
=2 \pi(0.4 \mathrm{~m})(1.8 \mathrm{~m})
$$

$$
=2.26 \mathrm{~m}^{2} \text { or } 0.72 \pi \mathrm{~m}
$$

$$
=3.39 \mathrm{~m}^{2} \text { or } 1.08 \pi \mathrm{~m}
$$

$$
=4.52 \mathrm{~m}^{2} \text { or } 1.44 \mathrm{~m}^{2}
$$

Area of the circles

$$
\begin{aligned}
& \text { If } r=0.2 \mathrm{~m} \\
& \text { If } r=0.3 \mathrm{~m} \\
& \text { If } r=0.4 \mathrm{~m} \\
& S A=2 \pi r^{2} \\
& =2 \pi(0.2 \mathrm{~m})^{2} \\
& S A=2 \pi r^{2} \\
& S A=2 \pi r^{2} \\
& =0.25 \mathrm{~m}^{2} \text { or } 0.08 \pi \mathrm{~m}^{2} \\
& =2 \pi(0.3 \mathrm{~m})^{2} \\
& =2 \pi(0.4 \mathrm{~m})^{2} \\
& =0.57 \mathrm{~m}^{2} \text { or } 0.18 \pi \mathrm{~m}^{2} \\
& =1.00 \mathrm{~m}^{2} \text { or } 0.32 \pi \mathrm{~m}^{2}
\end{aligned}
$$

Total surface area

$$
\begin{array}{rlrl}
\text { If } r & =0.2 \mathrm{~m} & \text { If } r & =0.3 \mathrm{~m} \\
T S A & =A_{\text {cube }}+A_{\text {pyramid }}+A_{\text {Lat, cylinder }}-A_{\text {circles }} T S A & =A_{\text {cube }}+A_{\text {pyramid }}+A_{\text {Lat, cylinder }}-A_{\text {circles }} \\
& =12.96 \mathrm{~m}^{2}+5.4 \mathrm{~m}^{2}+2.26 \mathrm{~m}^{2}-0.25 \mathrm{~m}^{2} & & =12.96 \mathrm{~m}^{2}+5.4 \mathrm{~m}^{2}+3.39 \mathrm{~m}^{2}-0.57 \mathrm{~m}^{2} \\
& =20.37 \mathrm{~m}^{2} & & =21.18 \mathrm{~m}^{2}
\end{array}
$$

$$
\begin{aligned}
\text { If } r & =0.4 \\
T S A & =A_{\text {cube }}+A_{\text {pyramid }}+A_{\text {Lat, cylinder }}-A_{\text {circles }} \\
& =12.96 \mathrm{~m}^{2}+5.4 \mathrm{~m}^{2}+4.52 \mathrm{~m}^{2}-1.00 \mathrm{~m}^{2} \\
& =21.88 \mathrm{~m}^{2}
\end{aligned}
$$

THE VOLUME OF THE TOY CASTLE

Volumes of cones

$$
\begin{aligned}
V_{\text {cone }} & =\frac{\pi r^{2} h}{3} \\
& =\frac{\pi(0.3)^{2}(0.4)}{3} \\
& =0.038 \mathbf{m}^{3} \\
2 \times V_{\text {cone }} & =2 \times 0.038 \mathbf{m}^{3} \\
& =0.08 \mathbf{m}^{3}
\end{aligned}
$$

Volume of the cylinders

$$
\begin{aligned}
V_{\text {cylinder }} & =\pi r^{2} h \\
& =\pi(0.3 \mathbf{m})^{2}(1.5 \mathbf{m}) \\
& =0.135 \pi \mathbf{m}^{3} \\
& \text { or } \quad 0.424 \mathbf{m}^{3} \\
4 \times V_{\text {cylinder }} & =4 \times 0.42 \mathbf{m}^{3} \\
& =1.70 \mathbf{m}^{3}
\end{aligned}
$$

Volumes of rectangular prisms

$$
\begin{aligned}
V_{\text {prism }} & =l \times w \times h \\
& =(1.2 \mathbf{~ m})(0.1 \mathbf{~ m})(1.5 \mathbf{~ m}) \\
& =0.18 \mathbf{m}^{3}
\end{aligned}
$$

Volumes of hemispheres

Total volume

$$
\begin{aligned}
V_{\text {hemisphere }} & =\frac{4 \pi r^{3}}{6} \\
& =\frac{4 \pi(0.3)^{3}}{6} \\
& =0.057 \mathrm{~m}^{3} \\
2 \times V_{\text {hemisphere }} & =2 \times 0.057 \mathrm{~m}^{3} \\
& =0.11 \mathrm{~m}^{3}
\end{aligned}
$$

THE SURFACE AREA OF THE TOY CASTLE

$$
\begin{aligned}
S L^{2} & =r^{2}+h^{2} \\
& =(0.3 \mathrm{~m})^{2}+(0.4 \mathrm{~m})^{2} \\
S L^{2} & =0.25 \mathrm{~m}^{2} \\
\sqrt{S L^{2}} & =\sqrt{0.25 \mathrm{~m}^{2}} \\
S L & =0.5 \mathrm{~m}
\end{aligned}
$$

Surface area of the cones

$$
\begin{aligned}
S A_{\text {cone }} & =A_{\text {Lat }}+A_{\text {base }} \\
& =\pi r S L+\pi r^{2} \\
& =\pi(0.3 \mathrm{~m})(0.5 \mathrm{~m})+\pi(0.3)^{2} \\
& =0.75 \mathrm{~m}^{2} \text { or } \quad 0.24 \pi \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
2 \times S A_{\text {cone }} & =2 \times 0.75 \mathrm{~m}^{2} \\
& =1.50 \mathrm{~m}^{2}
\end{aligned}
$$

Surface area of the cylinder

$$
\begin{aligned}
S A_{\text {cylinder }} & =A_{\text {Lat }}+2 A_{\text {base }} \\
& =2 \pi r h+2 \pi r^{2} \\
& =2 \pi(0.3 \mathbf{m})(1.5 \mathbf{m})+2 \pi(0.3)^{2} \\
& =3.39 \mathbf{m}^{2} \text { or } \mathbf{0 . 3 6} \pi \mathbf{m}^{2}
\end{aligned}
$$

$$
4 \times S A_{\text {cylinder }}=4 \times 3.39 \mathbf{~ m}^{2}
$$

$$
=13.56 \mathrm{~m}^{2}
$$

Surface area of the rectangular prisms

$$
\begin{aligned}
S A_{\text {prism }} & =A_{\text {base }}+A_{\text {Lat }} \\
& =2(l \times w)+P_{\text {base }} h \\
& =2(1.5 \mathbf{m})(\mathbf{0 . 1} \mathbf{~ m})+(2 \times \mathbf{1 . 5} \mathbf{~ m}+2 \times \mathbf{0 . 1 ~ m})(1.2 \mathrm{~m}) \\
& =4.14 \mathbf{~ m}^{2} \\
3 \times S A_{\text {prism }} & =\mathbf{3} \times \mathbf{4 . 1 4} \mathbf{m}^{2} \\
& =\mathbf{1 2 . 4 2} \mathbf{m}^{2}
\end{aligned}
$$

Surface area of the hemispheres

$$
\begin{aligned}
S A_{\text {hemistere }} & =A_{\text {Lat }}+A_{\text {Base }} \\
& =\frac{4 \pi r^{2}}{2}+\pi r^{2} \\
& =2 \pi(0.3 \mathrm{~m})^{2}+\pi(0.3)^{2} \\
& =0.85 \mathrm{~m}^{2} \text { or } 0.36 \pi \mathrm{~m}^{2} \\
2 \times S A_{\text {hemisphere }} & =2 \times 0.85 \mathrm{~m}^{2} \\
& =1.7 \mathrm{~m}^{2}
\end{aligned}
$$

Total surface area

$$
\begin{aligned}
T S A & =S A_{\text {cylinders }}+S A_{\text {cones }}+S A_{\text {hemisphere } \mathrm{s}}+S A_{\text {prisms }} \\
& =13.56 \mathrm{~m}^{2}+1.5 \mathrm{~m}^{2}+1.7 \mathrm{~m}^{2}+12.42 \mathrm{~m}^{2} \\
& =29.18 \mathrm{~m}^{2}
\end{aligned}
$$

$>$ THE RULE FOR THE COST $\mathbf{(\$)} \mathbf{~ v s ~ V O L U M E ~ O F ~ M A T E R I A L ~} \mathbf{(m}^{\mathbf{3}} \mathbf{)} \quad y=a x+b$

$$
y=6.75 x+7.50
$$

$>$ THE RULE FOR THE COST (\$) OF PAINTING (\mathbf{m}^{2})
Find the slope given two points $A(0,10)$ and $B(10,14)$

$$
\begin{aligned}
& a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& a=\frac{(14-10)}{(10-0)} \\
& a=\frac{4}{10} \\
& a=0.2 \\
& \text { Therefore } \quad y=0.2 x+10
\end{aligned}
$$

> THE TOTAL COST OF THE HIDEOUT HUT
Cost of the Hideout Hut Materials (m^{3})
If $r=0.2 \mathrm{~m} \quad$ If $r=0.3 \mathrm{~m}$
If $r=0.4 \mathrm{~m}$
$y=6.75 x+7.50$
$y=6.75 x+7.50$
$y=6.75(6.90)+7.50$
$y=6.75(6.62)+7.50$
$y=\$ 54.08$
$y=\$ 52.19$

$$
\begin{aligned}
& y=6.75 x+7.50 \\
& y=6.75(6.23)+7.50 \\
& y=\$ 49.55
\end{aligned}
$$

Cost of Painting the Hideout Hut (m^{2})
If $r=0.2 \mathrm{~m}$
If $r=0.3 \mathrm{~m}$
If $r=0.4 \mathrm{~m}$
$y=0.2 x+10$
$y=0.2(20.37)+10$
$y=0.2(21.18)+10$
$y=0.2(21.88)$
$y=\$ 14.07$
$y=\$ 14.24$
$y=\$ 14.38$

Total cost of the Hideout Hut

If $r=0.2 \mathrm{~m}$

$$
\text { If } r=0.3 \mathrm{~m}
$$

$$
\begin{aligned}
\text { Cost } & =\text { Materials }+ \text { Paint } \\
& =54.08+14.07 \\
& =\$ 68.15
\end{aligned}
$$

$$
=\text { Materials + Paint }
$$

$$
=52.19+14.24
$$

$$
=\$ 66.43
$$

If $r=0.4 \mathrm{~m}$
$=$ Material + Paint
$=49.55+14.38$
$=\$ 63.93$
> THE PROFIT FOR THE HIDEOUT HUT

If $r=0.2 \mathrm{~m}$		If $r=0.3 \mathrm{~m}$	If $r=0.4 \mathrm{~m}$
Profit	$=$ Sale Price - Cost		$=$ Sale Price -Cost
	$=99.95-68.15$		$=99.95-66.43$
	$=\$ 31.80$		$=\$ 33.52$

> THE TOTAL COST OF THE TOY CASTLE
Cost of the Toy Castle Material (m^{3})
Cost of painting the toy castle (m^{2})
$y=6.75 x+7.50$
$y=0.2 x+10$
$y=(6.75)(2.43)+7.50$
$y=(0.2)(29.18)+10$
$y=\$ 23.90$

$$
y=\$ 15.84
$$

> Total Cost of the Toy Castle

$$
\begin{aligned}
\text { Cost } & =\text { Materials }+ \text { Paint } \\
& =23.90+15.84 \\
& =\$ 39.74
\end{aligned}
$$

THE PROFIT FOR THE TOY CASTLE

$$
\begin{aligned}
\text { Profit } & =\text { Sale Price }- \text { Cost } \\
& =73.95-39.74 \\
& =\$ 34.21
\end{aligned}
$$

> Possible Answers

Option 1 (cylinder with radius $=0.2 \mathrm{~m}$)
I would recommend that TOYS N' THINGS sell the Toy Castle ${ }^{T M}$ ($\$ 34.21$) over the Hideout Hut ${ }^{T M}$ ($\$ 31.80$) since it generates a greater profit (\$2.41).

Option 2 (cylinder with radius $=0.3 \mathrm{~m}$)
I would recommend that TOYS N' THINGS sell the Toy Castle ${ }^{T M}$ ($\$ 34.21$) over the Hideout Hut ${ }^{T M}$ ($\$ 33.52$) since it generates a greater profit ($\$ 0.69$).

Option 3 (cylinder with radius $=0.4 \mathrm{~m}$)
I would recommend that TOYS N' THINGS sell the Hideout Hut ${ }^{T M}$ ($\$ 36.02$) instead of the Toy Castle ${ }^{\text {TM }}$ ($\$ 34.21$) since it generates a greater profit (\$1.81).
*Option 4 (cylinder with radius $=0.33 \mathrm{~m}$)
I would recommend that TOYS N' THINGS sell EITHER the Hideout Hut ${ }^{\top T M}$ OR the Toy Castle ${ }^{\text {TM }}$ since they both generate the same amount of profit ($\$ 34.21$).

Hideout Hut	Total Volume	Total Area	Cost Volume	Cost Area	Total Cost	Selling Price	Profit
Cylinder with radius of 0.2 m	$6.90 \mathrm{~m}^{3}$	20.37 $\mathrm{~m}^{2}$	$\$ 54.08$	$\$ 14.07$	$\$ 68.15$	$\$ 99.95$	$\$ 31.80$
Cylinder with radius of 0.3 m	$6.62 \mathrm{~m}^{3}$	21.18 $\mathrm{~m}^{2}$	$\$ 52.19$	$\$ 14.24$	$\$ 66.43$	$\$ 99.95$	$\$ 33.52$
Cylinder with radius of 0.4 m	$6.23 \mathrm{~m}^{3}$	21.88 $\mathrm{~m}^{2}$	$\$ 49.55$	$\$ 14.38$	$\$ 63.93$	$\$ 99.95$	$\$ 36.02$
Cylinder with radius of 0.33 m	$6.51 \mathrm{~m}^{3}$	21.41 $\mathrm{~m}^{2}$	$\$ 51.47$	$\$ 14.27$	$\$ 65.74$	$\$ 99.95$	$\$ 34.21$

Toy Castle	Total Volume	Total Area	Cost Volume	Cost Area	Total Cost	Selling Price	Profit
Toy Castle	$2.43 \mathrm{~m}^{3}$	29.18 $\mathrm{~m}^{2}$	$\$ 23.90$	$\$ 15.84$	$\$ 39.74$	$\$ 73.95$	$\$ 34.21$

*The Toy Castle ${ }^{T M}$ will generate more profit for any radii $\in[0.2,0.33[$ metres.
*The Hideout Hut ${ }^{\top M}$ will generate more profit for any radii \in] $\left.0.33,0.4\right]$ metres.

